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Anomalous diffusion of heterogeneous
populations characterized by normal

diffusion at the individual level
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The characterization of the dispersal of populations of non-identical individuals is relevant to
most ecological and epidemiological processes. In practice, the movement is quantified by
observing relatively few individuals, and averaging to estimate the rate of dispersal of the
population as a whole. Here, we show that this can lead to serious errors in the predicted
movement of the population if the individuals disperse at different rates. We develop a
stochastic model for the diffusion of heterogeneous populations, inspired by the movement of
the parasitic nematode Phasmarhabditis hermaphrodita. Direct observations of this nematode
in homogeneous and heterogeneous environments reveal a large variation in individual
behaviour within the population as reflected initially in the speed of the movement. Further
statistical analysis shows that themovement is characterized by temporal correlations and in a
heterogeneously structured environment the correlations that occur are of shorter range
compared with those in a homogeneous environment. Therefore, by using the first-order
correlated random walk techniques, we derive an effective diffusion coefficient for each
individual, and show that there is a significant variation in this parameter among the
population that follows a gammadistribution.Based on these findings, we build a newdispersal
model in which we maintain the classical assumption that individual movement can be
described by normal diffusion, but due to the variability in individual dispersal rates,
the diffusion coefficient is not constant at the population level and follows a continuous
distribution. The conclusions and methodology presented are relevant to any heterogeneous
population of individuals with widely different diffusion rates.

Keywords: heterogeneous population; leptokurtic behaviour; diffusion coefficient;
correlated random walk; gamma distribution
1. INTRODUCTION

The study of organism movement and dispersal has
become a key element for understanding a series of
ecological questions related to the spatio-temporal
dynamics of populations (Levin 1974; Kareiva 1990),
foraging strategies (Bell 1991) and the community
dynamics of interacting species (Banks et al. 1987;
Taylor 1990, 1991). Therefore, a description and analysis
of the process of movement is necessary to help us
adequately understand the consequences of movement
behaviour. One of the approaches to create such a link is
to analyse the movement of individuals and use this
description to directly infer the characteristics of the
spatial spread of the whole population (Blanche et al.
1996; Skalski & Gilliam 2000; Wiktorsson et al. 2004).
Unfortunately, in many cases, detailed observations of
individuals and their behaviour are very difficult to
obtain. In these situations, ecologists use classical
diffusion models to quantify organisms’ dispersal in
different environments.
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A common starting point of these models is to assume
that the movement of the organism is random (Brownian
motion; Croll & Sukhdeo 1981; Anderson et al. 1997;
Turchin 1998; Okubo & Levin 2002). However, experi-
mental observations over the past two decades have
shown that the spatial spread of some organisms follows
the leptokurtic distribution, where the probability per
unit time of individuals moving short and long distances
is higher compared with the Gaussian distribution
predicted by the Brownian motion (Kot et al. 1996;
Cain et al. 1998; Nathan 2001). Different assumptions
have been made to explain such behaviour. One of the
most frequent is that the individuals do not move
according to Brownian motion and therefore cannot be
described in terms of classical diffusion. Direct obser-
vations suggested that many entities, including animals,
exhibit correlatedmovement, i.e. subsequent direction of
the movement depends on the previous directions (Hall
1977; Kareiva & Shigesada 1983; Bergman et al. 2000).
As a consequence, the turning angle between successive
steps in a path is not uniformly distributed in the
interval (Kp,p) and characteristics of this distribution
are very important when modelling the movement
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patterns by correlated randomwalks (CRWs; Kareiva &
Shigesada 1983; Bovet & Benhamou 1988; Benhamou
2004, 2006; Codling et al. 2008). When there is a bias in
either direction, the CRWcan be used tomodel the loops
observed in the movement of some organisms (Bell 1991;
Blanche et al. 1996; Anderson et al. 1997; Conradt et al.
2000; Bengtsson et al. 2004), but sometimes this can lead
to an oversimplification, since the resulting loops are
orientated in one direction only. A solution to overcome
this problem is to considermorememory to the CRW, by
introducing a long-range correlation between the turning
angles (Blanche et al. 1996; Wu et al. 2000; Preisler et al.
2004) or even by adding correlation between turning
angles and the variable speed (Wiktorsson et al. 2004).
These diffusion models can produce leptokurtic dispersal
at small temporal scale; however, if there is only a short-
range dependence in the CRW then at large times, the
dispersal converges to normal diffusion (Tchen 1952;
Bovet & Benhamou 1988; Codling & Hill 2005).
A different approach, inspired again by observed data
(Lewis et al. 1992, 2006; Ramos-Fernandez et al. 2004), is
to divide individual behaviour into two events: periods of
activity (jumps) and periods of inactivity in which the
organisms are stationary (waiting times; Metzler &
Klafter 2000; Wiktorsson et al. 2004). Derived originally
from physics studies, when simulating the transport of
particles, this description is the basis of the continuous-
time random-walk (CTRW) model, in which the length
of a given jump, as well as the waiting time between
two successive jumps, follows a certain distribution.
Depending on the form of this distribution, the CTRW
model can generate different types of diffusion such as
sub-diffusion, Lévy flight or Lévy walk (Metzler &
Klafter 2000, 2004).Thesemodels have found application
in many biological systems (Levandowsky et al. 1997;
Atkinson et al. 2002;Ramos-Fernandez et al. 2004; Zhang
et al. 2007), althoughmore recent studies have suggested
that they may not be so reliable due to difficulties in
estimating model parameters from observed movement
data (Benichou et al. 2006; Benhamou 2007; Edwards
et al. 2007; Plank & James 2008).

In another explanation of the origin of the anomalous
diffusion described by the leptokurtic distribution, the
foraging behaviour of individuals is assumed to be
Brownian and the leptokurtic movement is caused by
heterogeneities. Many studies consider spatio-temporal
heterogeneities in which the organismmoves fast in some
regions and slow in others; such movement being
modelled by diffusion equations with a diffusion coeffi-
cient that depends on space (Johnson et al. 1992a,b;
Turchin & Thoeny 1993; Feltham et al. 2002) or by
considering temporal changes in individual movement
(Skalski & Gilliam 2003; Morales et al. 2004; Yamamura
2004; Yamamura et al. 2007). On the other hand,
heterogeneity among individuals in a population has
proven to be another important factor that can influence
population dispersal. To incorporate population hetero-
geneity into dispersal rate, some studies assume that the
movement of individuals is Brownian, but the travelling
durations of organisms vary following an inverse-gamma
distribution (Clark et al. 1999) or a gamma distribution
(Yamamura 2002) leading to fat-tailed dispersal kernels.
Another way to integrate population heterogeneity into
J. R. Soc. Interface (2009)
dispersal models is to assume that populations consist of
several subgroups with different diffusion coefficients
(Skalski & Gilliam 2000, 2003; Okubo & Levin 2002).
Inside each subgroup, the dispersal is described by a
normal diffusion process with a constant diffusion
coefficient that varies from one group to another.
Owing to this variability, the overall dispersal cannot
be described by normal diffusion and assumes a
leptokurtic form. The model presented by Skalski &
Gilliam (2000), based on two or more subgroups of
stream fishes, showed that an increase in the number of
subgroups not only significantly improves the model
fit but also increases the number of parameters involved
in the model. It is therefore reasonable to generalize
this idea by considering dispersing populations as
having diffusion coefficients distributed according to
a continuous probability distribution function.

The present work uses digital recordings of the
movement of the slug parasitic nematode Phasmarhab-
ditis hermaphrodita as the basis of a theoretical model
that quantifies the organism’s movement over time and
space. Phasmarhabditis hermaphrodita is a nematode
capable of controlling slug damage in a wide variety of
agricultural crops, and therefore a proper understanding
of their dispersal abilities is very important for the
optimization of this biocontrol system (Wilson et al.
1993; Tan & Grewal 2001; Hapca et al. 2007a). There
are very few models of nematode movement in the
literature. Earlier work assumes a simple random walk
model (Croll & Sukhdeo 1981; Hunt et al. 2001) with
subsequent effort incorporating a biased random walk
(Anderson et al. 1997), where an advection term was
added to the classical diffusion equation, to simulate the
loops in the movement patterns of Caenorhabditis
elegans. Recently, a two-dimensional correlated random
model has been considered to simulate the movement of
P. hermaphrodita in homogeneous environments (Hapca
et al. 2007b). It is an individual-based model that
incorporates a long-range correlation in the step length
recorded per unit time and the direction, so that each
new step length and each new direction depends on
previous directions and step lengths.

Most models have been derived from movement data
on plates of agar because, due to their microscopic size,
observations on movement of nematodes in soil are
difficult to obtain. Considering their role in regulating
soil biophysical properties, it is of practical importance to
understand how these organisms behave in a structurally
heterogeneous environment. In this study, we attempt to
understand the behaviour of P. hermaphrodita in soil, by
undertaking a comparative study between nematode
movement in a homogeneous environment (agar plates)
and a simulated heterogeneous structure obtained by
adding sand particles to the surface of the agar.
2. MATERIALS AND EXPERIMENTAL METHODS

2.1. Experimental treatments, image capture
and analysis

Dauer larvae of P. hermaphrodita were obtained from
BeckerUnderwood (Littlehampton, UK) in a formulated
product (Nemaslug) consisting of partially dehydrated
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dauer larvae bounded by clay particles. One hour prior
to the experiments, the nematodes were added to water
and cleaned by repeated sedimentation and washing.
Typical body dimensions were 1 mm in length and
0.03 mm in width.

In all treatments, the experimental arena comprised a
9 cm diameter Petri dish containing 1.2 per cent
technical agar (Oxoid Ltd, Hampshire, UK). To analyse
the effects of structural heterogeneity on nematode
movement, two experimental treatments were selected:
a nematode on (i) homogeneous agar (control, homo-
geneous) and (ii) agar with a monolayer of sand grains
(test plate, heterogeneous). One active nematode was
picked from the water where it was rehydrated, and
transferred, by means of an eyelash mounted on a
syringe pick, to the centre of the agar plate (Rodger et al.
2003). The same procedure was used for the second
treatment where the heterogeneous structure was
introduced by adding a monolayer of acid washed sand
grains (0.1–0.3 mm particle size) uniformly dispersed on
the plate by means of a very fine sieve until approxi-
mately 30 per cent of the surface area was covered.

An Axio MRc Zeiss camera was attached to a Leica
microscope MZ16 and connected to the computer
monitored movement of nematodes with an image
field size of 3!4 cm. It was not possible to consider a
larger image field and still be able to resolve the
nematode. The position of each nematode was recorded
at 8 s intervals over a period of 15 min, which was
equivalent to 100 frames. The experiments were done
under a constant temperature of 198C and 25 replicates
were prepared for each treatment.

Images were recorded with AXIO VISION v. 3.1 (Carl
Zeiss Inc., USA), then analysed using an image analysis
software incorporating a tracking algorithm (IMAGE-
PRO PLUS v. 5, Media Cybernetics Inc., MD, USA), in
order to obtain the x and y coordinates of the nematode
at each time point. MATLAB v. 7.3 (TheMathworks Inc.,
USA) was used to plot the final digitized nematode
trail, to compute the distance travelled between frames
(step length) and the value of the turning angle between
successive steps of the movement.
2.2. Data analysis

Direct observations of nematode movement on agar
plates suggested a large variation in individual
behaviour among the population. To measure this
variation, we computed the individual’s mean speed
(mm sK1) by calculating the average distance between
successive positions recorded in an 8 s time interval,
chosen on the basis that in 8 s the nematodes travel an
average distance that is approximately equal to their
body length (1 mm). Shorter time scales would have
introduced artefacts due to changes in body shape
during movement, and longer time scales would have
reduced the amount of data available for analysis.

The values of the step length were then used to
check if nematode activity on the agar plates was
constant during the recording time. EVIEWS v. 4
software was used to perform the Dickey–Fuller unit
root test (Gujarati 1995) for each nematode trail in
order to decide if the time series formed by the
J. R. Soc. Interface (2009)
nematode step length was stationary over time.
When performing the test for stationarity, a minimum
of 50 points in the time series are required. In our
experiments, due to the small image field size, some
nematodes had moved out of the image view before
the 15 min recording time. Therefore only 18 and 17
trails from the first (homogeneous) and second (hetero-
geneous) treatments, respectively, provided us with the
50 time points required and only those ones were
checked for stationarity.

To determine the degree of correlation between steps
in the individuals’ movement we first used MINITAB
v. 15 to compute the step length autocorrelation rDR(k)
as a function of lag k between steps. If there is no
seasonality trend in the time series, in general, the
autocorrelation function tends to decrease with the
increase of the lags, becoming close to zero after a certain
number of lags (Hanke & Wichern 2007). For each
individual trail, we determined the order of autocorrela-
tion in the step length time series as given by the largest
lag kR0 for which the corresponding coefficient of
correlation was significantly different from zero. Then
based on this autocorrelation order, the trails were
grouped into two categories: trails displaying at most a
first-order autocorrelation and trails with at least the
second-order autocorrelation coefficient significantly
different from zero. A 2!2 contingency table was
produced by recording the number of trails in each
category and for each treatment, and Fisher’s exact
probability test (Zar 1999) was used to determine
significant differences in the autocorrelation function
between treatments. Second, we generated nematode
turning angle distributions by computing the angle
between successive steps of the trails. The angular
range chosen was from Kp radians to p radians, and
all angles were computed with respect to the previous
direction. We adopted the convention that negative
values correspond to the right turns and positive values
to left turns. Circular statistics (Batschelet 1981;
Mardia & Jupp 1999; Zar 1999) were applied to the
values of the turning angle in order to compute the mean
turning angle a and the mean vector length r for each
nematode trail. The vector length r takes values between
0 and 1, and a value of r close to 0 would indicate that
there is no preferential turning direction in the move-
ment; on the contrary, if r becomes close to 1 then the
turning angles are concentrated around amean value and
we deduce that the individual has a preferential turning
direction given by the mean turning angle a. Next, the
individuals’ mean angles a and mean vectors r were used
to perform a second-order analysis of angles in order to
obtain the population mean angle �a and vector length �r
for each treatment. Then Hotelling’s procedure for
parametric one-sample second-order analysis of angles
(Zar 1999) was used for each treatment separately to test
whether there was a mean population direction in the
movement. As previously, in order to obtain reliable
results for the step length autocorrelation function and
the turning angle distribution, we considered those trails
containing at least 50 time steps for the analysis, i.e. 18
and 17 trails for the homogeneous and heterogeneous
treatments, respectively.
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Figure 1. Different patterns inP. hermaphroditamovement in (a) homogeneous and (b) heterogeneous environments. Trails labelled
(i)–(iv) vary in nematode speed: (i)Zfast through to (iv)Zslow.

0

0.1

0.2

0.3

0.4

0.025 0.075 0.125 0.175 0.225 0.275 0.325

mean speed (mm s–1)

re
la

tiv
e 

fr
eq

ue
nc

y

Figure 2. The distribution of individual’s mean speed
(mm sK1) in homogeneous (dotted bars) and heterogeneous
(hatched bars) environments obtained from 25 replicates.

Table 1. 2!2 contingency table for the step length
autocorrelation, showing the number of trails in each of the
two autocorrelation categories (short-range autocorrelation,
i.e. autocorrelation order k%1, and long-range autocorrela-
tion, kO1) broken down by treatment type.

autocorrelation order
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Finally, nematode step lengths and features of the
turning angle distribution such as mean cosine c, mean
sine s, mean vector length r and mean angle a were used
for each trail separately to determine the individual’s
diffusion coefficient. The formula (A 5) presented in
appendix A, to calculate the coefficient of diffusion,
applies for CRW in which the turning angles are statisti-
cally independent; it was first derived by Kareiva &
Shigesada (1983), then developed by Marsh & Jones
(1988) and Benhamou (2004, 2006). From the previous
analysis, the experimental results suggested that the
movement in heterogeneous structure was closer to the
CRW, unlike the homogeneous treatment where longer
range dependence was found in the steps of the move-
ment. Therefore, in the first instance, the diffusion
coefficient was calculated only for those trails and then
used to validate the diffusion model developed in the
study. A gamma distribution was fitted to the distri-
bution of the individuals’ diffusion coefficients using
maximum-likelihood methods for parameter estimates
(Cramer 1986) and the Kolmogorov–Smirnov test was
used for goodness-of-fit test (Statistics Toolbox, MATLAB

v. 7.3).
treatment k%1 kO1 total

homogeneous 5 13 18
heterogeneous 11 6 17
3. EXPERIMENTAL RESULTS

Examples of nematode trails produced in each of the
two experimental treatments are presented in figure 1.
A large variation in individual behaviour is reflected in
their mean speed (figure 2), ranging from nematodes
moving at the slowest speeds (figure 1a) to those
moving fastest (figure 1(iv)).

Next, the Dickey–Fuller test for stationarity showed
that, in both environments, the statistical properties of
the movement of the majority of nematodes remained
constant during the recording time, with only three
trails in the homogeneous treatments and one trail in
the heterogeneous treatment not satisfying the statio-
narity condition.

At the individual level, the step length autocorrela-
tion function in the heterogeneous structure was
significantly different from the control. Table 1 shows
that, in the presence of sand particles, the autocorrela-
tion in step lengths for the majority of nematodes (11 out
of 17) is not significantly different from zero for lags
greater than one, while in the homogeneous environment
J. R. Soc. Interface (2009)
13 out of 18 nematodes were displaying at least a second-
order coefficient of correlation significantly different
from zero. The results of Fisher’s exact probability test
showed that the difference between the two treatments
was significant (pZ0.0313).

The distribution of the turning angle corresponding to
the two treatments is presented in figure 3. In the
homogeneous environment, the distribution is peaked
around the value 0 corresponding to a forward persistent
movement. By contrast, in the heterogeneous environ-
ment it becomes more flat around this value, with an
increase in frequency aroundKp and p corresponding to
backward movement. The second-order analysis of the
turning angles showed that in the homogeneous environ-
ment the forwardpersistence in themovementwas highly
significant (�aZK0:026; �rZ0:39, FZ6.60, d.f.Z2,16,
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Figure 4. (a) Gamma distribution (dashed curve) with
parameters nZ0.57 and lZ0.21 fitted to the distribution of
individuals’ diffusion coefficients (solid line). (b) The corre-
sponding cumulative distribution functions used to perform
the Kolmogorov–Smirnov goodness-of-fit test. It is shown
that the gamma distribution (dashed curve) fits the data more
accurately compared to the best-fit normal distribution
(dotted curve) with parameters mZ0.118 and sZ0.187;
solid line, diffusion coefficient distribution.
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Figure 3. The distribution of the turning angle corresponding
to nematode movement in homogeneous (dotted bars) and
heterogeneous (hatched bars) environments. The error bars
represent standard errors for nZ18 and 17 in the homo-
geneous and heterogeneous environments, respectively.
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pZ0.002), while in the heterogeneous environment
this tendency was less significant (�aZK0:042; �rZ0:23,
FZ4.13, d.f.Z2,15, pZ0.037).
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The previous statistical analysis shows that the
individuals’ steps are correlated with both environ-
ments; however, the movement becomes less correlated
with the presence of heterogeneous structure. There-
fore, we assume that in the heterogeneous environment
the movement can be described by a first-order CRW.
It has been proved that after a sufficiently large number
of steps, the CRW converges to normal diffusion
(Tchen 1952; Bovet & Benhamou 1988; Codling &
Hill 2005), with a diffusion coefficient derived in
appendix A. The resulting distribution of the diffusion
coefficients in the heterogeneous structure is presented
in figure 4a. A Kolmogorov–Smirnov test showed a
good fit (figure 4b, pZ0.89) to this distribution by a
gamma distribution with maximum-likelihood esti-
mates nZ0.57G0.13, lZ0.21G0.07.
4. MODEL DESCRIPTION

4.1. A stochastic process in two dimensions
associated with nematode movement

Nematode movement is described in terms of a two-
dimensional stochastic process (Xt, tR0) defined on the
space U, representing the population of nematodes.
Thus, for each nematode u2U,XtðuÞZðX1

t ðuÞ;X2
t ðuÞÞ

corresponds to the position of the nematode at a certain
time tR0. We aim to determine the probability density
function (PDF), pXt

ðxÞ; x 2R2, associated with this
stochastic process that will be used to quantify
nematode dispersal.

Based on the experimental results, we assume that
the process (Xt, t2(0, T )) has stationary increments
up to a certain time, T, and that the individuals’
movement is governed by normal diffusion with a
diffusion coefficient, D, that varies among the individ-
uals. If we denote by BD

t the Brownian motion
associated with normal diffusion, then the correspond-
ing PDF is described by the Gaussian kernel

pBD
t
ðxÞZ 1

4pDt
exp K

jxj2

4Dt

� �
; tO0; x 2R2: ð4:1Þ

We develop a heterogeneous population model that
considers the contribution of each individual to the
movement of the population as a whole. The case where
D follows a discrete distribution has already been
investigated by Skalski & Gilliam (2000). When D
follows a continuous distribution with a PDF, fD on
(0,CN) the stochastic process (Xt, t2(0, T )) can be
defined by its finite-dimensional distributions as follows:

pðXt1
;Xt2

;. ;Xtn Þðx 1; x 2;.; xnÞ

Z

ðN
0
fDðsÞpðBs

t1
;Bs

t 2
;. ;Bs

tn
Þðx1; x2;.; xnÞds;

xi 2R2; iZ 1;.;n;

9>>>=
>>>;

ð4:2Þ

for any n2N � and 0% t1! t2!/! tn%T . The
finite-dimensional distributions above satisfy the
Kolmogorov’s consistency criterion and therefore
the stochastic process (Xt, t2(0, T )) is well defined
(Applebaum 2004).



1 2 3 4 5 6 7 8 9 100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

distance from origin (mm)

PD
F 

pr
of

ile

Figure 5. The modelled profile of PDF of nematode dispersal
with parameters nZ0.57 and lZ0.21, at three different time
intervals corresponding to 5 (solid curve), 10 (dashed curve)
and 15 (dotted curve) min.

5 10 15 20 25 300

2

4

6

8

10

12

14

16
PD

F 
pr

of
ile

 (
× 

10
–3

)

distance from origin (mm)

30 35 40 45 50

10 –5

10 –4

lo
g 

(P
D

F 
pr

of
ile

)

Figure 6. The modelled profile of the PDF of nematode
dispersal at tZ15 min, with parameters nZ0.57 and lZ0.21
(solid curve) compared to the PDF profile of a normal
diffusion with diffusion coefficient DZ0.118 mm2 sK1 (dotted
curve) with an inset of the log tail of the leptokurtic dispersal
provided by the model (solid curve) compared to the log-tail
of the normal diffusion (dotted curve).
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Prompted by the experimental results, we present
the case when the diffusion coefficient D follows a
gamma distribution, g(l, n). Replacing fD in (4.2) by
the gamma distribution we obtain

pXt
ðxÞZ

ðN
0

snK1 expðKs=lÞ
lnGðnÞ $

1

4pts
expðKjxj2=ð4tsÞÞds

Z
1

2pltGðnÞ $
jxj

2
ffiffiffiffiffi
lt

p
� �nK1

$KnK1 jxj=
ffiffiffiffiffi
lt

p� �
;

ð4:3Þ

where Kn is the modified Bessel function of the second
kind (Watson 1966).

Some important properties of this stochastic process
are detailed in appendix B. It can be easily deduced
that, in common with Brownian motion, the process
(Xt, t2(0, T )) preserves the property of self-similarity
with a Hurst parameter HZ1/2, and the mean square
displacement is linear in time. Next, the increments are
stationary in time, but unlike the Brownianmotion, they
are not independent (B 2). It can be shown that the
stochastic process described by (4.3) can be charac-
terized by a leptokurtic distribution. This can be
deduced from the asymptotical behaviour and
the behaviour at origin of the PDF (4.3). Using the
asymptotic properties of the Bessel functions (Watson

1966) one can obtain that for large x[ jðnK1Þ2K1=4j
we have

pXt
ðxÞz 1

4
ffiffiffi
p

p
ltGðnÞ

jxj
2
ffiffiffiffiffi
lt

p
� �nK3=2

expðKjxj=
ffiffiffiffiffi
lt

p
Þ;

which shows a longer tail compared with the
normal distribution, while close to the origin, i.e.
x!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nK1j jC1

p
,

pXt
ðxÞz Gð1KnÞ

4pltGðnÞ
jxj

2
ffiffiffiffiffi
lt

p
� �2ðnK1Þ

for 0!n!1 and pXt
ðxÞz1=ð4pltðnK1ÞÞ for nR1. In

the particular case, nZ3/2, we rediscover the exponen-
tial kernel pXt

ðxÞZð1=2pltÞexpðKjxj=
ffiffiffiffiffi
lt

p
Þ. Alterna-

tively, by computing the kurtosis of the marginal
distributions of the stochastic process we obtain

Kurt X1
t

� �
ZKurt X2

t

� �
Z

E X1
t KE X1

t

� �� �4� �
Var X1

tð Þ2

Z
12t 2l2nðnC1Þ

4t2l2n2
Z

3ðnC1Þ
n

O3;

which again is a characteristic of the leptokurtic
distribution.

Finally, for a time step DtO0, the step lengths
ðjDXnjZ jXnDtKXðnK1ÞDtj; nR1Þ form a long memory
process in the sense defined by Beran (1994) (see
appendix B for further details).
5. MODEL APPLICATION AND RESULTS

The theoretical model presented above was first
validated against the data obtained from nematode
movement in the heterogeneous structure. The PDF of
nematode dispersal was derived from (4.3) with gamma
distribution parameters nZ0.57 and lZ0.21, obtained
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previously. The resulting profile is plotted in figure 5
for three different times, 5, 10 and 15 min, and then
compared to the normal diffusion with diffusion
coefficient DZ0.118, computed by averaging over all
the individual diffusion coefficients. Figure 6 shows
clearly the difference between the two models, and how
the model developed in this paper is characterized by a
leptokurtic distribution.

In order to validate the model, for each trail, we
computed the net displacement at 5, 10 and 15 min,
where 15 min represented the total recording time. As
some of the nematodes were out of the image field before
the total recording time, we could not include measures
of the net displacement for them. As an alternative, we
divided the image area into four sections corresponding
to less than 5 mm, 5–10 mm, 10–15 mm and greater
than 15 mm distance from the nematode starting point
and counted how many nematodes were in each of the
four sections after 5, 10 and 15 min from the time they



Table 2. Observed and predicted numbers of nematodes at less than 5 mm, 5–10 mm, 10–15 mm and greater than 15 mm distance
from the release point, corresponding to 5, 10 and 15 min. (‘New model’ stands for the model developed here; ‘S–G model’ is the
model developed by Skalski & Gilliam (2000) in which four groups with diffusion coefficients D1Z0.026, D2Z0.147, D3Z0.433,
D4Z1.647 were considered; ‘normal diffusion model’ is the classical model with diffusion coefficient DZ0.118. The
p-values represent the probabilities associated with the chi-squared goodness-of-fit test of the observed data against the
predicted values provided by the different models.)

time

section

!5 mm 5–10 mm 10–15 mm O15 mm p-value

5 min
observed 11 4 5 5 –
new model 10.86 6.55 3.54 3.97 0.601
S–G model 5.32 5.72 3.46 10.48 0.018
normal diffusion 4.42 9.10 7.13 4.33 0.004

10 min
observed 9 4 2 10
new model 7.88 5.91 3.93 7.24 0.425
S–G model 2.97 4.93 3.38 13.70 0.003
normal diffusion 2.19 5.49 6.37 10.92 0.000

15 min
observed 6 4 4 11
new model 6.74 5.44 3.88 8.83 0.798
S–G model 2.23 4.29 3.40 15.05 0.056
normal diffusion 1.60 4.21 5.40 13.77 0.005
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were released. Nematodes that were out of the image
field by the end of the recording time were counted in
the last section.

The resulting counts are presented in table 2 and
compared with the numbers predicted by the new model
developed in this paper. The results of the chi-squared
goodness-of-fit test showed that for each of the three
time intervals, the observed counts were not significantly
different from the predicted ones (pO0.425). Also table 2
shows that this new diffusion model gives a better fit
than a model assuming normal diffusion with diffusion
coefficient DZ0.181 derived from the data (p!0.005).

However, these results do not provide any evidence
that the new model produces a better prediction than
the one developed by Skalski & Gilliam (2000), where
the diffusion coefficient was characterized by a discrete
distribution. In order to address this, we arranged the
values of the individuals’ diffusion coefficient in ascend-
ing order and divided the population of nematodes into
four subgroups, the first subgroup containing four
individuals corresponding to the smallest four values in
the dataset. The other three subgroups were constructed
in a similar way, with each containing six individuals.
A diffusion coefficient was calculated for each subgroup,
by averaging over the values of the diffusion coefficient of
the individuals within that subgroup. This resulted
in the following four values: D1Z0.026, D2Z0.147,
D3Z0.433, D4Z1.647. These values were then used to
compute the predicted numbers of nematodes in each of
the four sections and for the three different instant times,
5, 10 and 15 min. Table 2 shows that, although we have
divided the population into four discrete subgroups, this
model is inferior to the new model.

Finally, in order to complete the analysis we attemp-
ted to validate the model with the data obtained from
nematode movement in homogeneous environment.
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Despite the fact that the statistical analysis presented
previously showed that movement on homogeneous
plates is characterized by a longer range correlation
compared with heterogeneous structure, we employed
again the CRW techniques described in appendix A, to
derive the values of the individuals’ diffusion coeffi-
cients. Kolmogorov–Smirnov test showed a good fit
(pZ0.92) of the distribution of individuals’ diffusion
coefficients to a gamma distribution with maximum-
likelihood estimates nZ0.84G0.21 and lZ0.19G0.061,
values that were next implemented into the model.
The model was validated as previously by counting the
number of nematodes in each of the four sections and
for the three different times and then compared with
the ones predicted by the model. The results of the
chi-squared goodness-of-fit test (pZ0.522, 0.402 and
0.902 at tZ5, 10 and 15 min, respectively) showed a
good fit of the model to the data, proving that the
first-order CRW techniques (appendix A) were reliable
when applied to random walks characterized by a longer
range correlation.
6. SUMMARY AND CONCLUSIONS

In this paper, we develop a diffusion model for the
dispersal of a heterogeneous population that can be used
to predict nematode movement in soil. The findings
obtained from the experiments on agar plates can be
extrapolated to the soil environment, where irrespective
of how complex the structure is, the population will
preserve the variation in individual behaviour observed
in the experiments. We do not discount the possibility
that the nematode will exhibit a correlated movement in
soil. However, we have seen that in the presence of
heterogeneous structure, this is a short-range depen-
dence and therefore at large times it converges to normal
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diffusion. Therefore, the model assumes normal diffusion
at the individual level but shows that, due to the
heterogeneity observed in the experiments, the diffusion
of the population becomes leptokurtic.

While the general finding in relation to variation
between individuals is not in itself novel (Clark et al.
1999; Skalski & Gilliam 2000, 2003; Yamamura 2002),
the diffusion model presented here is new and of
significant relevance for the ecological sciences. It is
an obvious extension of the diffusion model that can be
used to predict spatio-temporal distribution of moving
organisms, where classical models fail as they do not
consider that individuals within a population have
different movement tendencies. Therefore, the tech-
niques are relevant for such heterogeneous populations
where individuals disperse with different diffusion
coefficients that follow a continuous distribution.
When describing heterogeneity effects on dispersal by
using continuous distributions, most authors use the
inverse gamma distributions or gamma distribution,
for describing the fluctuation of dispersal parameter
‘aZDt’ (Skellam 1951a,b; Clark et al. 1999), but
without specifying whether fluctuation in the diffusion
coefficient D or the travelling duration t is more
important. Yamamura (2002) and later Tufto et al.
(2005) considered the fluctuation of the travelling time
to be more important, especially for predicting long-
term dispersal. In both studies the travelling time (time
to settling) follows a gamma distribution, the resulting
dispersal model being cited in the literature as the
gamma model. The PDF describing the gamma model
is similar to equation (4.3) developed in this paper;
however, the essential difference is that in Yamamura
(2002), the model predicts only the spatial distribution
due to the fact that an integration over time is made.
Yamamura (2002) mentioned in the discussions that a
diffusion coefficient variable within the population can
be assumed as well, but might not be very realistic when
modelling long-term dispersal, especially when the
individual diffusion coefficient depends on the environ-
mental conditions that are likely to vary at large
temporal scales. Therefore, in a later study Yamamura
(2004) and Yamamura et al. (2007) considered a
fluctuating diffusion coefficient over time, and therefore
again, the time does not appear explicitly, but is hidden
in the parameter n that consequently increases with the
increase of time, hence a PDF different from (4.3).
Supported by experiments, here we adopted the
assumption that the individual diffusion coefficient is
constant over time but varies among the population
and so we developed a spatio-temporal model that
predicts how the distribution evolves over space and
time simultaneously, and this arises from the fact that
in (4.3) we integrate over the diffusion coefficient
and not over time. We think that it is reasonable to
consider both temporal changes in individual behaviour
as well as differences among individuals as realistic
assumptions for a long-term dispersal model, and this
will be carried out in a future study.

The choice of the gamma distribution in equation
(4.3) was inspired by the experimental results on
nematode movement, where the values of individuals’
diffusion coefficients were fitting well this distribution.
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The advantages of this theoretical distribution lie in the
fact that because two parameters are involved, it can be
easily fitted to a large range of distributions obtained
from experimental data. However, should the diffusion
coefficients derived from experiments be consistent with
a different distribution, the techniques that we have
presented in this paper, in particular formula (4.2), can
be easily applied to any continuous distribution. The
only problem that can occur is that for a different
distribution it may not be possible to deduce the PDF
associated with the stochastic process explicitly. If this is
the case, numerical approaches can be used to calculate
the integral in (4.2). In this study, the gamma
distribution leads to a convenient and interesting
formula of the PDF described by (4.3) that can be
used to further investigate the theoretical properties of
this stochastic process. However, due to the fact that it is
expressed in terms of Bessel functions, we must resort to
numerical approximations to calculate the predicted
probabilities, as was the case in table 2.

The model presented here has been successfully
validated using the data obtained from nematode
movement in heterogeneous structure and it proves
that we can only obtain a reliable prediction by
choosing a continuous distribution of the diffusion
coefficient. The previous models in which the popu-
lation was divided into two or more subgroups of
individuals with different diffusion coefficients among
the subgroups can be applied when we deal with
different species from the same population and when
the differences are very distinguishable and so it is easy
to place the individual in one category or another. This
was the case in the study done by Skalski & Gilliam
(2000), where the model was validated on a population
formed by two species of fishes. But when individuals
with different behaviour come from the same species, as
is the case here, it is much harder to group them into a
finite number of subgroups. In this study, we showed
that by grouping the individuals into four subgroups we
obtain a model with four parameters that is inferior to
the new model that involves only two parameters.
While it is true that by increasing the number of
subgroups we can improve the model fit, this is just a
way of approximating a continuous distribution using a
discrete one. However, the use of successive subdivi-
sions introduces its own limitations as the number of
required parameters becomes prohibitive. Therefore,
the only way forward is to assume a continuous
distribution of the individuals’ diffusion coefficients.

In this study, the distribution of the diffusion
coefficient was obtained by recording the individual
movement on agar plates at the same time scale for all
the nematodes. Related to this procedure, there are two
points that need to be discussed here. First, when trying
to derive the value of the diffusion coefficient assuming a
CRW in the movement patterns, this value can be
significantly affected by the scaling rate (Bovet &
Benhamou 1988; Codling & Hill 2005). In particular,
when individuals travel with different movement rates,
choosing a right time scale for each individual based on
its ability to move can give better estimates of the
diffusion coefficient. Here, we have chosen to work with
the same time scale for all the individuals, in order to be
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consistent with the statistical analysis of the nematodes’
trail, including the analysis for stationarity and for the
autocorrelation function of the step length. The values of
the individual diffusion coefficients obtained by using the
same time scale for all individuals were shown to be
reliable as they provided good parameter estimators
to validate the model. It is not the aim of this study to
investigate how the use of different time scales for
different individuals would affect the parameter esti-
mates and whether these estimates provide a better fit to
the dispersal data when implemented in the model. This
analysis can lead to interesting results and it will be
considered in a future study. On the other hand, the way
the experiments were designed to obtain movement data
and implicitly the model that we have produced based on
these data does not take into account possible ‘altera-
tions’ in individuals’ movement caused by interactions
between organisms, or the presence of chemical signals or
other biological processes including death rate or
reproduction in relation to environmental conditions.
In its simple form, the study presented here presents a
framework for a new diffusion model that successfully
quantifies the dispersal of heterogeneous populations in
the absence of any other physical or biological processes.
These important aspects need to be addressed and added
carefully in future studies if we want to have a detailed
picture of population dynamic over time and space.
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theory of Bessel functions. We are also grateful to the
anonymous referees for their constructive comments. This
research was funded by the Biotechnology and Biological
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APPENDIX A
A.1. Dispersal rate in a CRW model

We consider a first-order CRW ðXkÞkZ0;. ;n,nR1, with
independent turning angles following a distribution
characterized by mean turning angle a, mean vector
length r, mean cosine c and mean sine s. If we denote by
DR the variable step length then the mean squared
displacement of the movement is equal to (Kareiva &
Shigesada 1983)

MSDðXnÞZEðjXnKX0j2ÞZnEðDR2Þ

C2EðDRÞ2 nðcKr2ÞKc

ð1KcÞ2 Cs2
C

2s2 CQnC1

½ð1KcÞ2 Cs2�2
� �

;

ðA 1Þ
with QnC1Z((1Kc)2Ks2)rnC1 cos((nC1)a)K2s(1Kc)
!rnC1 sin((nC1)a). When the right and left turns are
balanced (az0), equation (A 1) can be approximated by
(Hall 1977)

MSDðXnÞZEðjXnKX0j2Þ

ZnEðDR2ÞCEðDRÞ2 2c

1Kc
nK

1Kcn

1Kc

� �
:

ðA 2Þ
Moreover, when the step number, n, is large or the
mean cosine, c, is low, formula (A 2) can be further
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approximated by (Benhamou 2004, 2006)

MSDðXnÞZEðjXnKX0j2Þ

ZnEðDR2ÞCnEðDRÞ2 2c

1Kc
: ðA 3Þ

It has been shown that as the number of steps increases,
the CRW converges toward the normal diffusion with a
diffusion coefficient D. Consequently, at large times the
mean square displacement will follow a linear pattern in
time given by

MSDðXnÞz4DnDt; ðA 4Þ
where Dt is the travelling duration between steps.
Combining (A 1) with (A 4), we obtain the formula of
the diffusion coefficient

D Z
1

4Dt
EðDR2Þ

C
1

2nDt
EðDRÞ2 nðcKr2ÞKc

ð1KcÞ2 Cs2
C

2s2 CQnC1

½ð1KcÞ2 Cs2�2
� �

;

ðA5Þ
which, depending on the characteristics of the CRW,
can be further simplified as in (A 2) or (A 3).
APPENDIX B
B.1. Properties of the stochastic process Xt

The increments of the stochastic process (Xt, t2(0, T ))
are stationary in time, but unlike the Brownian motion,
they are not independent. The stationarity can be
deduced straightforwardly from equation (4.2) and the
fact that the Brownian motion is characterized by
stationary increments. Indeed, consider 0%s!t%T
and XtKXs the corresponding step, then

pXtKXs
ðxÞZ

ðN
0

snK1 expðKs=lÞ
lnGðnÞ $pB s

tKBs
s
ðxÞds

Z

ðN
0

snK1 expðKs=lÞ
lnGðnÞ $

1

4pðtKsÞs
!expðKjxj2=ð4ðtKsÞsÞÞds

Z
1

2plðtKsÞGðnÞ $
jxj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðtKsÞ

p
 !nK1

$KnK1 jxj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðtKsÞ

p� �
; ðB 1Þ

which proves the stationarity. To demonstrate that the
steps are not independent, let us consider 0%r! l!
s! t%T , then the joint PDF of the steps XtKXs and
XlKXr can be computed as in (B 1), which gives

pXtKXs ;XlKXr
ðx1; x2Þ

Z
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0
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Since the joint probability is not separablewith respect to
the variable x1 and x2, we deduce that the increments are
not independent. Moreover, in what follows, we prove
that the step lengths of the stochastic process
(Xt, t2(0, T )) form a long memory process in the sense
defined by Beran (1994).

Consider the time step Dt and denote by DXnZ
XnDtKXðnK1ÞDt; nR1, the steps associated with the
process Xt. Since Xt has stationary increments, from
(B 1) we deduce that the steps DXn have the same PDF
for any nR1, given by

fDXn
ðxÞZ 1

2plDtGðnÞ $
jxj

2
ffiffiffiffiffiffiffiffi
lDt

p
� �nK1

$KnK1 jxj=
ffiffiffiffiffiffiffiffi
lDt

p� �
; x 2R2: ðB 3Þ

Consequently, the step lengths DRnZ jDXnj have the
same PDF for any nR1:

fDRn
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0
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lnGðnÞ fDR sðrÞds
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p
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$KnK1 r=
ffiffiffiffiffiffiffiffi
lDt
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cð0;CNÞðrÞ:

ðB 4Þ

And the joint distribution between different step
lengths can be computed as follows:

fDRn ;DRm
ðr1;r2Þ

Z
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0

snK1 expðKs=lÞ
lnGðnÞ fDRs

n ;DR
s
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where

fDRn ;DRm
ðr1;r2ÞZ fDRn

ðr1ÞfDRm
ðr2Þ

Z
r1r2

2D 2Dt 2
exp K

r1Cr 22
4DDt
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is the joint distribution of the Brownian motion step
lengths. In what follows, we show that the process
ðDRn;nR1Þ is a long memory process. Towards this, we
compute the correlation between the lengths of two
different steps and analyse how this correlation varies
with the lag between steps. If kR1 is the lag between
two steps, then, since ðDRn;nR1Þ is stationary in
time, for any nR1 we have rDRðkÞZrðDRnCk ;DRnÞZ
CovðDRnCk ;DRnÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDRnCkÞ$VarðDRnÞ

p
, and from

equations (B 4), (B 5) we can explicitly obtain

EðDRnÞZEðDRÞZ
ffiffiffiffiffiffiffiffiffiffiffi
plDt

p
GðnC1=2Þ=GðnÞ;

VarðDRnÞZVarðDRÞZlDtð4GðnC1Þ$GðnÞ

KpðGðnC1=2ÞÞ2Þ=GðnÞ2;

CovðDRnCk ;DRnÞZplDtðGðnC1Þ$GðnÞ

KðGðnC1=2ÞÞ2Þ=GðnÞ2:
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From the three equalities above, we deduce that

rDRðkÞZ
GðnC1Þ$GðnÞKðGðnC1=2ÞÞ2

4=p$GðnC1Þ$GðnÞKðGðnC1=2ÞÞ2
; ðB 6Þ

which is always positive and non-zero, and it does not
depend on the lag between steps. Consequently, the
series

PN
kZ1 rðkÞ diverges and we conclude that

(DRn,nR1) is a long memory process. One can consider
this as a contradictory result when compared to the fact
that individual movement is Brownian, hence no
memory. However, the fact that individuals move
with different diffusion rate produces a long memory
effect in the population dispersal.
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